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The onset of compressible convection in rapidly rotating spherical shells is studied
in the anelastic approximation. An asymptotic theory valid at low Ekman number
is developed and compared with numerical solutions of the full equations. Com-
pressibility is measured by the number of density scale heights in the shell. In the
Boussinesq problem, the location of the onset of convection is close to the tangent
cylinder when there is no internal heating only a heat flux emerging from below.
Compressibility strongly affects this result. With only a few scale heights or more
of density present, there is onset of convection near the outer shell. Compressibility
also strongly affects the frequencies and preferred azimuthal wavenumbers at onset.
Compressible convection, like Boussinesq convection, shows strong spiralling in the
equatorial plane at low Prandtl number. We also explore how higher-order linear
modes penetrate inside the tangent cylinder at higher Rayleigh numbers and compare
modes both symmetric and antisymmetric about the equator.

1. Introduction
Convection occurs in many stars and planets and is ultimately responsible for

generating their winds and magnetic fields. The rotation rate of most of these
objects is much faster than their diffusive time scales, even if these are enhanced by
turbulence. Consequently, rapidly rotating convection in spherical shell geometry is
a key problem in astrophysical and planetary fluid dynamics. In most applications,
the convection is in the strongly nonlinear regime rather than close to onset as
assumed here. Nevertheless, an understanding of the linear problem is an essential
prerequisite to understanding the very complex behaviour found in the nonlinear
regime. At a very basic level, comparison with a well-established linear theory is an
important validation for the sophisticated nonlinear computational fluid dynamics
(CFD) codes used to develop insight into rotating convecting fluids. Many features
observed in such simulations can be understood in terms of linear results, and linear
theory allows a reasonably complete coverage of the large parameter space. Fully
three-dimensional high-resolution simulations (e.g. Miesch et al. 2000; Heimpel,
Aurnou & Wicht 2005) are too computationally expensive to allow coverage of the
multi-dimensional parameter space, so the linear theory provides an invaluable guide
as to the most suitable areas for nonlinear exploration.
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The Boussinesq theory of the onset of rapidly rotating convection is now fairly
well understood, but the rapidly rotating compressible case has received much less
attention. The compressible problem is however more relevant to the problem of
rapidly rotating convection in stars and planets, because convection occurs over
many scale heights of density in all stars and in giant planets (Guillot 1999a, b).

The asymptotic theory of the onset of rapidly rotating convection in a Boussinesq
sphere was developed by Roberts (1968) and Busse (1970). These papers established
the local theory of convection. However, although this local theory has many points
of contact with experiments and numerical calculations and forms a useful simple
picture of rotating convection, it became clear (e.g. Zhang 1992) that the predicted
critical Rayleigh numbers were incorrect except at very large Prandtl number. This
problem was resolved with the development of the global theory of convection by
Jones, Soward & Mussa 2000 and Dormy et al. 2004. In this paper we extend this
global asymptotic theory to the compressible case. Busse & Hood (1982) and Zhang
(1992) also established the spiralling nature of rotating convection, that is in the
equatorial section the columnar structures spiral in a prograde direction or in other
words in cylindrical coordinates (s, φ, z) in the positive φ direction as s increases. This
spiralling is important in driving strong zonal flows from the Reynolds stresses (e.g.
Jones, Rotvig & Abdulrahman 2003; Rotvig & Jones 2006). If there is no spiralling,
any zonal flow has to be in the form of thermal or magnetic winds.

In seminal papers on rotating compressible convection, Gilman & Glatzmaier
(1981) and Glatzmaier & Gilman (1981a, b) showed that compressibility made the
convection occur preferentially nearer the outer boundary. Their model differed in
some respects from ours, but nevertheless we also find this to be a strong effect, as
did Drew, Jones & Zhang (1995). Drew et al. (1995) also found the surprising result
that convection could occur for negative Rayleigh number Ra in some parameter
regimes. Here we show that this cannot be the case if entropy diffusion dominates
over thermal diffusion, as is likely to be the case in most astrophysical applications.

The structure of the paper is as follows: first we formulate the problem, noting
some differences between our model and some previous models. We then establish
rigorously that for our current model instability is not possible at negative Rayleigh
number, in distinction to the previous model of Drew et al. (1995). Next we develop
the asymptotic theory as the Ekman number E → 0 for compressible convection. At
fixed compressibility and moderate Prandtl number the convection takes the form of
tall thin columns, as does Boussinesq convection. Then we discuss the results from a
numerical eigenvalue code for the full equations, comparing them with the results of
our asymptotic theory. Further we study some of the higher-Ra modes, i.e. beyond
the lowest mode, which form the high latitudinal structures. This sheds some light on
to how convection penetrates inside the tangent cylinder as the Rayleigh number is
increased.

2. Governing equations
The geometry of the problem is a spherical shell lying between r = ri and r = ro,

where ro − ri = d . The radius ratio ri/ro = η. We consider a polytropic basic state of
the atmosphere with radial gravity, the effective mass M being entirely within the
shell so that gravity g falls off as 1/r2 within the shell.

dp

dr
= −GMρ

r2
,

p

p0

=

(
ρ

ρ0

)1+ 1
n

, (2.1a, b)
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where p0 and ρ0 are the reference values of pressure and density at the mid-point
r = (ri + ro)/2 in the layer and n is the polytropic index. We non-dimensionalize
on the length unit d , so that from now on r is the dimensionless radial coordinate.
Assuming the perfect gas law, the solution of these equations is then written in the
form (Gilman & Glatzmaier 1981)

ρ = ρ0

(
GMρ0

rp0(n + 1)d
+ c0

)n

= ρ0ζ
n, ζ =

c1

r
+ c0, c1 =

GMρ0

p0(n + 1)d
, (2.2a, b, c)

p = p0ζ
n+1, T = T0ζ, (2.2d, e)

T being the temperature and T0 its value at the mid-point. We suppose the polytrope
has Nρ density scale heights, that is ρ(ri)/ρ(ro) = expNρ , leading to

ζo =
η + 1

η exp
(
Nρ/n

)
+ 1

, c0 =
2ζo − η − 1

1 − η
, c1 =

(1 + η)(1 − ζo)

(1 − η)2
, (2.3a, b, c)

ζo being the value of ζ at r = ro, showing that the dimensionless polytrope is completely
determined once n, η, Nρ are specified. Note that the dimensionless r satisfies

ri =
η

1 − η
< r < ro =

1

1 − η
. (2.4)

At the mid-point of the layer, where ρ, p and T have their reference values, ζ = 1. The
departure from the Boussinesq case, which is the limit Nρ → 0 (see § A) is measured
by Nρ . In the case Nρ = 5, which we use below to illustrate a strongly compressible
case, the density ratio between the inner and outer boundaries is about 150.

The equations are formulated in terms of entropy, which for a perfect gas is given
by

S = cp

(
1

γ
lnp − ln ρ

)
, (2.5)

where cp is the specific heat at constant pressure and γ is the ratio of the specific
heats cp/cv . In the anelastic approximation, we assume the convection is driven by
small disturbances pc and ρc to the reference state pressure p(r) and density ρ(r)
(small meaning pc � p and ρc � ρ). The corresponding entropy perturbation is

Sc =
cp

γ

(
pc

p
− γρc

ρ

)
. (2.6)

Lantz (1992) and Braginsky & Roberts (1995) independently discovered that when
the basic reference state is close to an adiabatic state, the nonlinear momentum
equation can be written

∂u
∂t

= u × ω − 2Ω × u − ∇
(

pc

ρ
+

1

2
u2

)
+ ν Fv − g

Sc

cp

. (2.7)

Here u is the velocity, Ω the angular rotation vector, ω the vorticity and

Fv =
1

ρ

∂

∂xj

ρ

(
∂ui

∂xj

+
∂uj

∂xi

)
− 2

3ρ

∂

∂xi

ρ
∂uj

∂xj

. (2.8)

This form of the viscous force corresponds to a constant kinematic viscosity ν

(Batchelor 1967, p. 164 and p. 175). In many applications, the viscosity will be
a turbulent viscosity, whose precise form is uncertain, but the present form has
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the advantage of simplicity. An alternative, not explored here, would be to choose
constant dynamic viscosity μ = ρν.

The significant difference between (2.7) and the more general compressible equation
of motion (see e.g. Chandrasekhar 1961, equation (18)) is that use has been made of
the relation

− 1

ρ
∇pc+g

ρc

ρ
= −∇

(
pc

ρ

)
−g

Sc

cp

+
pc

ρ

{
1

γp

dp

dr
− 1

ρ

dρ

dr

}
r̂ ≈ −∇

(
pc

ρ

)
−g

Sc

cp

. (2.9)

For a fuller discussion, see § 4.2 of Braginsky & Roberts (1995), in particular their
equation (4.19). If γ =1+1/n, using (2.2a, d) the term in the curly braces is zero, and
provided γ is close to this value and any departure of p and ρ from the exact polytrope
is small, this approximation is valid. The great advantage of this representation is that
when the curl and double curl of (2.7) are taken, the only thermodynamic convective
variable left is the entropy; so we avoid having to solve a separate Poisson equation
for the pressure perturbation (see e.g. Clune et al. 1999), which would be required to
evaluate ρc. Since it is often the case that convection in planets and stars leads to a
reference state that is close to adiabatic, (2.9) is a useful approximation. Note that if
the layer were an exact polytrope with γ = 1 + 1/n, the entropy drop across the layer
would be zero, and no convection would occur; so there must be small departures of
p and ρ from the exact polytropic values which give rise to a small but finite entropy
drop 	S across the layer which is the same order of magnitude as Sc.

The continuity equation has the anelastic form (e.g. Gough 1966)

∇ · ρ u = 0. (2.10)

To derive the entropy equation, we start with the dimensional equation of heat
transfer in the absence of external heat sources (Landau & Lifshitz 1959, equation
(49.4)),

ρT

(
∂S

∂t
+ (u · ∇)S

)
= ∇ · ρcpκm∇T + ρνQ, (2.11)

where κm is the thermal diffusivity due to molecular processes (thermal conductivity
and radiative conductivity) and

Q = 2

[
eij eij − 1

3
(∇ · u)2

]
, with eij =

1

2

(
∂ui

∂xj

+
∂uj

∂xi

)
, (2.12)

is the viscous heating. The linearized form of this equation was used in the previous
studies of linear compressible convection (Glatzmaier & Gilman 1981a; Drew et al.
1995). However, in planets and stars the turbulence will give rise to a diffusion of
entropy which will normally be much larger than the molecular conductivity term.
Furthermore, in compressible flow, turbulent elements preserve their entropy, not their
temperature, when the conductivity is small. Prandtl’s mixing-length ideas suggest that
turbulent elements will move a certain distance and then release their entropy content
into their surroundings. This suggests that the turbulent entropy flux is proportional
to the entropy gradient, not the temperature gradient. While in Boussinesq convection,
eddy thermal diffusion can take a form similar to the molecular thermal diffusion,
but with a much larger diffusivity, in compressible flow this is no longer the case.
This was recognized by Gilman & Glatzmaier (1981), who included a diffusive flux
proportional to ∇T − ∇Tad , i.e. proportional to potential temperature rather than
actual temperature. We must now decide whether to model the effect of turbulence,
bearing in mind that there is no universally agreed theory of how this should be
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done, or ignore it. The model used here was developed by Braginsky & Roberts
(1995) in the context of Earth’s core convection (see their § § 4.3 and 4.4, particularly
their equations (4.22), (4.30) and (4.38)) and was used (independently) in the stellar
convection context by Clune et al. (1999, equation (3)). The essential assumption is
that there is a turbulent velocity ut which gives rise to a turbulent entropy fluctuation
St , and these can be averaged over a short length scale so that ut = St = 0, but
ρutSt = I t , a non-zero entropy flux. We now adopt the well-known gradient–diffusion
model (see e.g. Davidson 2004, p. 165),

I t = −ρκ∇S. (2.13)

If we view the small-scale velocity ut as prescribed, the small-scale turbulent entropy
fluctuation is forced by the term ρ(ut · ∇)S and so is linearly proportional to ∇S. The
most general form for the turbulent entropy flux is then

I t
i = −ρκij

∂S

∂xj

, (2.14)

where κij is an anisotropic eddy diffusivity. This argument relies on the effect of
turbulence being local; so the correlation length of the turbulence must be much less
than any radius of curvature length of the entropy profile S. Furthermore, as pointed
out by Braginsky & Roberts (1995), it is not clear that the isotropic form κij = κδij is
always appropriate in a rotating system, but one might hope that if the unresolved
turbulent velocity has sufficiently small length and time scales, it will be unaffected by
the rotation. We adopt here the isotropic form (2.13), which has been the most popular
choice in simulations, e.g. Clune et al. (1999), and which forms the basis of the much
used nonlinear anelastic spherical harmonic (ASH) code for anelastic convection.

Just as molecular diffusion gives a source term creating entropy, so turbulent
diffusion also gives rise to a source term σ t; so

ρ

(
∂S

∂t
+ (u · ∇)S

)
= −∇ · I t + σ t +

1

T
∇ · ρcpκm∇T +

ρνQ

T
, σ t = − 1

T
(I t · ∇)T ,

(2.15)

the expression for σ t being given by Braginsky & Roberts (1995, equations (4.37) and
(3.7b)). So the nonlinear heat transport equation is

ρT

(
∂S

∂t
+ (u · ∇)S

)
= ∇ · ρT κ∇S + ∇ · ρcpκm∇T + ρνQ. (2.16)

Note that this form of σ t ensures that the turbulent diffusion appears only as a
divergence in (2.16); so there is no source of energy arising from the turbulence, only
a source of entropy, consistent with the first law of thermodynamics. Consistency
with the second law requires that the entropy source term is positive, which from
(2.13) and (2.15) requires ∇S · ∇T � 0. Since the layer is unstably stratified, this will
normally be the case. In this paper, we adopt the opposite extreme of that taken in
Drew et al. (1995) and ignore the molecular κm in comparison with the turbulent κ .
Since the reference state is assumed to be close to adiabatic, we can take S = Sc in
the nonlinear heat transport equation. We can always add an arbitrary constant to
entropy; so we can take the entropy Sc as zero at r = ro and 	S at r = ri .

We non-dimensionalize our equations, using the length scale d , time scale d2/ν,
(where ν is the constant kinematic viscosity), mass ρ0d

3 and unit of entropy Pr	S

(where Prandtl number Pr = ν/κ , κ is the constant entropy diffusion coefficient and
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	S the entropy drop across the layer); so the dimensionless entropy S satisfies the
boundary conditions

S = Pr−1 on r = ri, S = 0 on r = ro. (2.17a, b)

The six dimensionless parameters that govern anelastic compressible convection are

Ra =
GMd	S

νκcp

, Pr =
ν

κ
, E =

ν

Ωd2

Nρ = ln

(
ρ(ri)

ρ(ro)

)
, n, η =

ri

ro

,

⎫⎪⎪⎬⎪⎪⎭ (2.18a−f )

Ra being the Rayleigh number and E the Ekman number.
We now linearize the entropy equation and put it in dimensionless form. We linearize

about a state with u = 0 and no time dependence. The basic state entropy S̄(r) is
determined by the nonlinear entropy equation (2.16) together with the boundary
conditions (2.17). Since we neglect κm, (2.16) becomes

1

r2

d

dr
r2ζ n+1 dS̄

dr
= 0, (2.19)

using (2.2a, d). The dimensionless solution, using boundary conditions (2.17) is

S̄ =
Pr−1

(
ζ −n
o − ζ −n

)
ζ −n
o − ζ −n

i

, (2.20)

where

ζi = c0 +
c1

ri

, ζo = c0 +
c1

ro

. (2.21)

We now assume u and S ′ are small and ignore second-order quantities. The basic
state entropy S̄(r) can be balanced by a (small) static pressure in (2.7), so we can
replace Sc in (2.7) by S ′. We obtain

Pr
∂S ′

∂t
= −Pru · ∇S̄ + ζ −n−1∇ · ζ n+1∇S ′. (2.22)

Note that a term from the advection down the mean entropy gradient, ∇S̄, has now
appeared. The boundary conditions on S ′ are taken as fixed entropy conditions, so

S ′ = 0 on r = ri, ro . (2.23)

The linearized, dimensionless form of (2.7) used in this paper is

∂u
∂t

= −2E−1 ẑ × u − ∇
(

p′

ρ

)
+ Fv +

RaS ′

r2
r̂. (2.24)

Equations (2.10), (2.22) and (2.24) form the basis of the remainder of this paper. It
should be noted that we used the turbulent diffusion of entropy to determine the basic
static entropy state about which we linearized. This may appear surprising because
the static state cannot be turbulent. However, we view the linear theory as the small-
amplitude limit of the nonlinear problem, and even at very low amplitudes turbulent
diffusion will dominate molecular diffusion, and so the state described by (2.20) will
be approached as the Rayleigh number is reduced towards critical. Ultimately, as
the amplitude falls further, convection will be so slow that the turbulent diffusion
will fall below even the molecular diffusion, and a new basic state determined by
(2.16) with only molecular diffusion will be approached. We do not consider such
extremely small-amplitude convection here, as we are primarily interested in the limit
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Ra → Racrit from above. The Boussinesq limit of these equations is discussed in § A.1.
Equations (2.22) and (2.24) are complemented by the boundary conditions (2.23) and
either no-slip or stress-free boundary conditions for the velocity u. The numerical
implementation of the velocity boundary conditions is discussed in § 5 below.

3. Impossibility of convection at negative Ra

A surprising result of Drew et al. (1995) was the existence of growing modes even
at negative Ra at some parameter values. In that paper it was conjectured that this
anomalous behaviour was due to the presence of temperature diffusion rather than
entropy diffusion in the entropy equation (2.16), i.e. κ =0 but κm �= 0. Using entropy
diffusion only, (2.22), one might expect that negative Rayleigh number always gives
stability, and we now prove that this is indeed the case.

We multiply (2.24) by ρu and integrate over the whole shell to get

∂

∂t

∫
1

2
ζ nu2 dv =

∫
ζ nu · Fv dv + Ra

∫
ζ nS ′ ur

r2
dv, (3.1)

where the pressure term is removed using the divergence theorem and (2.10). Now
multiply (2.22) by RaPr−1ρ(dS̄/dr)−1S ′/r2 and integrate over the shell to get

RaPr

2nc1

(ζ −n
o − ζ −n

i )
∂

∂t

∫
ζ 2n+1(S ′)2 dv = Ra

∫
ζ nS ′ ur

r2
dv

+
Ra(ζ −n

o − ζ −n
i )

nc1

∫
ζ nS ′∇ · ζ n+1∇S ′ dv, (3.2)

Subtracting (3.2) from (3.1) we obtain

∂

∂t

∫
1

2
ζ nu2 − RaPr

2nc1

(ζ −n
o − ζ −n

i )ζ 2n+1(S ′)2 dv =

∫
ζ nu · Fv dv

− Ra(ζ −n
o − ζ −n

i )

nc1

∫
ζ nS ′∇ · ζ n+1∇S ′ dv. (3.3)

Now if Ra < 0, the integral on the left-hand side of (3.3) is positive; so for growing
modes the left-hand side must be positive. However, we show below that for negative
Ra both integrals on the right-hand side are non-positive. It is therefore impossible
to have growing modes at negative Rayleigh number.

3.1. Viscous term

Using (2.8) with the summation convention,

V =

∫
ζ nu · Fv dv =

∫
∂

∂xj

{
uiρ

(
∂ui

∂xj

+
∂uj

∂xi

)
− 2

3
ujρ

∂ui

∂xi

}
dv

−
∫

∂ui

∂xj

ρ

(
∂ui

∂xj

+
∂uj

∂xi

)
dv +

2

3

∫
ρ

∂ui

∂xi

∂uj

∂xj

dv. (3.4)

The divergence term in (3.4) vanishes if either no-slip or stress-free boundary
conditions apply; so

V = −1

2

∫
ρ

(
∂ui

∂xj

+
∂uj

∂xi

)(
∂ui

∂xj

+
∂uj

∂xi

)
dv +

2

3

∫
ρ

(
∂ui

∂xi

)2

dv

= −4

3

∫
ρ

(
∂ui

∂xi

)2

dv − 1

2

∫
ρ

∑
i �=j

(
∂ui

∂xj

+
∂uj

∂xi

)2

dv � 0, (3.5)



298 C. A. Jones, K. M. Kuzanyan and R. H. Mitchell

establishing that for either no-slip or stress-free boundary the viscous term is always
negative.

3.2. Entropy term

Define

H =

∫
ζ nS ′∇ · ζ n+1∇S ′ dv =

∫
∇ · (ζ 2n+1S ′∇S ′) dv −

∫
ζ n+1∇(ζ nS ′) · ∇S ′ dv. (3.6)

The divergence term vanishes if S ′ = 0 on the boundaries, the case studied here, and
also if the normal derivative of S ′ vanishes on the boundaries. It is not immediately
apparent that the second term on the right of (3.6) has definite sign, as it is not a
square. However, we can rewrite this term so that

H = −
∫

ζ [∇(ζ nS ′)]2 dv +

∫
(ζ 1−n∇ζ n) · ∇1

2
(ζ nS ′)2 dv (3.7)

The first term is clearly now negative definite, and the second term vanishes if S ′ = 0
on the boundaries. To see this, using (2.2b),∫

(ζ 1−n∇ζ n) · ∇1

2
(ζ nS ′)2 dv = −nc1

2

∫ ∫ ∫
∂

∂r
(ζ nS ′)2 sin θ dr dθ dφ = 0, (3.8)

provided the boundary conditions are S ′ = 0 at the surface.
This establishes that both V and H are non-positive; so there cannot be growing

modes if Ra < 0. In the case Ra = 0, it is also easy to establish there can be no
growing modes; so unlike the Drew et al. (1995) problem, we only have linear growth
for Ra > 0. The method can be generalized for any thermal diffusivity of the form
κ = κ0ρ

α , which includes the case of constant thermal conductivity k = κρ, α = − 1.
The reference state is now

S̄ =
ζ −n(1+α)
o − ζ −n(1+α)

Pr
[
ζ

−n(1+α)
o − ζ

−n(1+α)
i

] (α �= −1), S̄ =
ln ζo − ln ζ

Pr[ln ζo − ln ζi]
(α = −1). (3.9)

The method of proof to establish that growing modes cannot occur for negative Ra
is the same as above.

Of course, this proof does not rule out the possibility of subcritical instability to
nonlinear disturbances. Note that the proof fails if we use temperature diffusion, that
is ignoring the turbulent term in (2.16), rather than entropy diffusion, which ignores
the κm term. Then the integrals corresponding to (3.6) contain products of ∇S ′ and
∇T ′, and no definite conclusions about sign can be deduced. There is therefore no
contradiction here with the results of Drew et al. (1995).

Note also that our proof does depend on specific assumptions about the equilibrium
model. If for example there were internal heating, then the form of dS̄/dr would
change, and our method might no longer apply. Also, we required the boundary
condition S ′ = 0 on the boundaries to establish (3.8); it remains possible that with
other boundary conditions negative Rayleigh number instability can occur even with
entropy diffusion.

4. Small E asymptotic theory
The onset of Boussinesq convection in a rapidly rotating sphere has been solved

in the asymptotic limit E → 0 (Jones et al. 2000) and in the spherical shell case
(Dormy et al. 2004). Here we extend this Wentzel-Kramers-Brillouin (WKB) theory
from Boussinesq to anelastic compressible convection.
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In cylindrical polar coordinates (s, φ, z) we can satisfy the continuity equation (2.10)
setting

ζ nu = ∇ × Ψ ẑ + ∇ × ∇ × Ξ ẑ. (4.1)

In the limit E → 0, the numerical solutions discussed below indicate that the
convection at onset takes the form of tall thin columns in compressible convection as
well as in Boussinesq convection. Following Jones et al. (2000) we adopt the scalings

1

s

∂

∂φ
∼ ∂

∂s
∼ O(E−1/3),

∂

∂z
∼ O(1), (4.2)

when acting on perturbed quantities. Since we are seeking WKB solutions, we assume
disturbances are proportional to

exp[i(ks + mφ − ωt)], (4.3)

where ω is in general complex. So at leading order,

∇2, ∇2
H → −

(
k2 +

m2

s2

)
= −a2. (4.4)

At the boundaries, ur = 0, so in general uz and us are of the same order; therefore
from (4.1) Ξ ∼ E1/3Ψ . It follows that

ζ nus =
∂2Ξ

∂z∂s
+

1

s

∂Ψ

∂φ
∼ 1

s

∂Ψ

∂φ
, ζ nuφ =

1

s

∂2Ξ

∂z∂φ
− ∂Ψ

∂s
∼ −∂Ψ

∂s
. (4.5)

The appropriate asymptotic scalings for the variables are (Jones et al. 2000)

Ra = E−4/3R, ω = E−2/3ω̂, m = E−1/3m̂, k = E−1/3k̂,

a = E−1/3â, S ′ = S ′, Ψ = E−1/3ψ, uz = E−2/3w.

}
(4.6)

4.1. Equations for the z structure and the local dispersion relation

We insert these expressions into the z component of the curl of the momentum
equation (2.24) and the z component of the double curl of the momentum equation,
retaining only leading-order terms. A considerable simplification results because
gradients of the density are only O(1), whereas horizontal derivatives of perturbed
quantities are larger at O(E−1/3). Together with the entropy equation, we obtain

1

ζ n

dψ

dz
=

1

2
(â2 − iω̂)w − RzS ′

2r3
+

nzψ

rζ n+1

dζ

dr
, (4.7)

dw

dz
=

(
â2

2ζ n
(â2 − iω̂) − im̂n

rζ n+1

dζ

dr

)
ψ +

im̂RS ′

2r3
− nzw

ζr

dζ

dr
, (4.8)

S ′ =
1

(iω̂Pr − â2)(ζ −n
o − ζ −n

i )

dζ

dr

(
im̂nψ

rζ 2n+1
+

nzw

ζn+1r

)
. (4.9)

On eliminating S ′ we obtain a second-order two-point boundary value problem in z

with eigenvalue ω̂. The boundary conditions are

im̂ψ + zwζn = 0, on z = ±
(

1

(1 − η)2
− s2

)1/2

. (4.10)

This system is the compressible equivalent of the Roberts–Busse equations (see
equation (3.5) of Jones et al. 2000 and equation (3.11) of Dormy et al. 2004 for the
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Boussinesq equivalents). It defines the local dispersion relation for ω̂ in terms of the
parameters. There are solutions both symmetric and antisymmetric about the equator,
but as in the Boussinesq problem, the first modes to onset always appear to be those
symmetric in ψ and antisymmetric in w. The system has to be solved numerically,
but of course this is a very simple one-dimensional problem compared to the task of
solving the full system numerically, which involves the inversion of very large matrices
(see § A.2).

4.2. Local analysis

The first step in analysing the dispersion relation is to require that the growth rate
Im{ω̂} =0 and also that ∂Im{ω̂}/∂m̂ = 0 and ∂Im{ω̂}/∂s = 0. As in the Boussinesq

case, ω̂ is a function of k̂2 rather than k̂ alone; so minimizing over k̂ results in k̂ =0.
We hold Pr , Nρ and n fixed and find the values of m̂, R and s that satisfy these
three conditions. The critical value of s found may lie in (i) 0 <s <η/(1 − η) or
(ii) η/(1 − η) < s < 1/(1 − η), depending on the parameters. The system is singular
at s = 1/(1 − η), and critical s cannot exceed that value. As explained in Dormy
et al. (2004), these two cases must be treated differently. In case (i) the local maximum
of Im{ω̂} does not lie inside the fluid. In consequence, the minimum critical Rayleigh
number is achieved at the tangent cylinder, and convection will occur there first as R
is increased. The leading-order value of critical R is given by setting s = si , its value
at the tangent cylinder, and solving Im{ω̂} =0 and ∂Im{ω̂}/∂m̂= 0 for R and m̂. The
width of the convective region near onset is O(E2/9), and the (non-zero) frequency is
given by Re{ω̂}.

4.3. Global analysis

In case (ii), the global theory of instability must be used. Now the WKB theory
predicts that onset lies in the neighbourhood of some s = sM inside the fluid; so a
solution is required for which the amplitude decays to zero as (s − sM )/E1/3 → ±∞.
For such solutions to exist, there must be a value of s in the complex plane at which
both the real and imaginary parts of ∂ω̂/∂s = 0. So these two conditions, together
with Im{ω̂} =0 and ∂Im{ω̂}/∂m̂ =0, give four equations for four unknowns, R, m̂

and s = sr + isi . The value of Rc that emerges from global theory is larger by an
order one amount from the local value. Once the turning point sc = sr + isi has been
identified in the complex plane, Rc, ω̂c and m̂c are determined; so the dispersion
relation ω̂(k̂, s) = ω̂c becomes an equation that determines complex k̂ as a function
of complex s, and at sc, k̂ has a double zero. If we insert real values s and find the
value of s = sM at which k̂ is purely real, then the solution has s dependence in the
neighbourhood of s = sM ,

∼exp

[
ik̂M

s − sM

E1/3
+

ik̂′
M

2

(s − sM )2

E1/3

]
, with k̂′

M =

(
dk̂

ds

)
M

, (4.11)

provided the k̂ root with Im{dk̂/ds} > 0 is chosen. It follows that s = sM is where the

convection has maximum amplitude in case (ii). The quantities k̂M and Im{dk̂/ds}M

give the radial wavenumber near the onset of convection and the inverse width of
the convecting region respectively; k̂MsM/m̂ measures the amount of spiralling in the
solution, discussed further in § 6. Other important quantities are the values of s at
which the anti-Stokes lines cut the real s-axis, s− and s+. The anti-Stokes lines are
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defined by the path

Im

{∫ s

sc

k̂(s) ds

}
= 0, (4.12)

sc being the double turning point in the complex plane. As discussed in Jones
et al. (2000), the global asymptotic theory is only valid when the interval (s−, s+) lies
entirely within the fluid. If s− <si or s+ > so, then the boundary conditions at s = si

or s = so matter, and the asymptotic theory becomes considerably more complicated.

4.4. Algorithms required to evaluate asymptotic results

To study the asymptotic theory, a suite of five programs is required. First, for any set
of parameters η, Nρ , n and Pr the dispersion relation given by solving (4.7)–(4.10) is

used to minimize R over s and m̂ (with k̂ = 0). If the minimizing value of s satisfies
s � η/(1−η), then we must fix s = η/(1−η) and use a second program that minimizes
R over m̂ only, to get the correct value of Rc. If on the other hand s > η/(1 − η),
then the global theory must be applied. We use a third program that solves complex
dω̂/ds = 0, Im{ω̂} =0 and Im{∂ω̂/∂m̂} =0 for the four unknowns R, m̂, sr and si .
Then a fourth program which inputs the values of Rc, m̂ and ω̂c from the global
theory program is used to find k̂(s) from the relation ω̂c = ω̂(k̂, s). This program must
find the real value of s = sM at which Im{k̂} =0 and also find the corresponding

values of k̂ = k̂M and Im{dk̂/ds}M , being careful to select the sign of k̂M such that

Im{dk̂/ds}M > 0. The fifth program, which finds s− and s+, evaluates the complex
path integral

Im

{∫ s

sc

k̂(s) ds

}
from the double turning point to any real s, again calculating k̂ from ω̂c = ω̂(k̂, s). The
program must then find the zeros of this real integral as s varies to obtain s− and s+.

Since the dispersion relation ω̂c = ω̂(k̂, s) always has two roots k̂ with opposite signs,
care must be taken to ensure that the same root is taken as the complex integral is
evaluated.

5. Numerical formulation for finite E

5.1. Toroidal and poloidal decomposition

From the continuity equation (2.10) we can set

u =
1

ρ
∇ × ∇ × r̂fρ +

1

ρ
∇ × r̂eρ, (5.1)

where e and f are the toroidal and poloidal velocity component potentials,
respectively. Note that here we use Chandrasekhar’s (1961, Appendix III) definition
of toroidal and poloidal scalars based on the unit vector r̂ . The anelastic continuity
equation (2.10) is automatically satisfied for this decomposition. The boundary
conditions can be taken to be either no-slip or stress-free,

f = e =
∂f

∂r
= 0, no−slip, (5.2)

f = r
∂e

∂r
− 2e = r

∂2f

∂r2
− 2

∂f

∂r
+

r

ρ

dρ

dr

∂f

∂r
= 0, stress−free. (5.3)
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Stress-free boundary conditions were used in all the numerical results presented here.
At low E, there is not a great deal of difference in the linear theory between stress-free
and no-slip boundary conditions, as the leading-order asymptotic results are the same
in both cases (see e.g. Dormy et al. 2004). It is only when zonal flow generation
is considered that the difference between stress-free and no-slip conditions becomes
crucial (see e.g. Gillet & Jones 2006).

We are looking for the solutions for velocity and entropy in the form of azimuthal
waves

e = e(r, θ) ei(mφ−ωt), f = f (r, θ) ei(mφ−ωt), S ′ = S ′(r, θ) ei(mφ−ωt), (5.4)

where m is the azimuthal wavenumber, and positive values of the frequency ω

correspond to prograde motion and negative values to the retrograde one. At low E

prograde modes appear to be the most unstable.
Further details of the toroidal–poloidal equations, together with a brief description

of the numerical method used, are given in § B.

6. Results
6.1. The Boussinesq case

Before discussing the effects of compressibility, we first recall some of the known
features of Boussinesq rapidly rotating convection, gleaned from Busse (1970), Zhang
(1992), Jones et al. (2000), Al-Shamali, Heimpel & Aurnou (2004) and Dormy et al.
(2004). In spherical shell models at low E, convection first occurs outside the tangent
cylinder surrounding the inner core. In the case of differential heating, that is no
internal heating and a prescribed temperature drop across the shell, the onset of
convection occurs in the neighbourhood of the tangent cylinder, whereas with internal
heating onset can occur in the interior of the shell. In this paper we only consider
the differential heating case. With slow rotation, convection may be axisymmetric at
onset (Geiger & Busse 1981), but in rapidly rotating systems, convection always takes
a non-axisymmetric columnar form except at very low Prandtl number (Zhang 1994)
at which inertial modes may occur first. In this paper, we have not explored these
very low-Pr cases.

The preferred azimuthal wavenumber at onset increases with radius ratio. At
Pr = 1 and E = 2 × 10−4, m =6 is preferred at η = 0.35, but onset with m =61 is first
at η = 0.85. Asymptotically, the Rayleigh number scales as Ra ∼ E−4/3 as E → 0,
m ∼ E−1/3, and the frequency of the most unstable mode scales as ω ∼ E−2/3, although
this asymptotic dependence is only completely established at very low E (Dormy et al.
2004), and for E ≈ 10−4 Al-Shamali et al. (2004) found that for the Rayleigh number
dependence an exponent E−1.16 fitted the numerical data best. The frequency first
increases and then decreases as η is increased. If the Prandtl number is decreased, the
critical azimuthal wavenumber is somewhat reduced, and the frequency is increased.
Thus at Pr =0.1, E = 2 × 10−4 and η = 0.35, m =5 is preferred, while at η =0.85,
mcrit =43 with the frequency being about three times the Pr =1 value.

In all cases, the mode with z vorticity symmetric about the equator (and the
z velocity antisymmetric) is preferred over the modes with the opposite symmetry
(Busse 1970).

6.2. Compressible results

Dormy et al. (2004) noted that if the heat flux driving the convection were applied
at the inner boundary and if there were no internal heating (the case there called
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Figure 1. Critical Ra , ω and m as functions of Nρ (E = 2 × 10−4, Pr =1, n= 2):
(a) η = 0.5; (b) η = 0.85.

differential heating), then there would be onset of convection at the tangent cylinder;
i.e. case (i) of § 4.2 would apply irrespective of the size of the inner core. Since
this is the form of heating adopted here, we might expect case (i) to occur always.
Furthermore, the form of gravity adopted here g ∼ 1/r2 favours convection closer to
the tangent cylinder than the g ∼ r used in Dormy et al. (2004). Remarkably, even
a rather modest amount of compressibility completely overcomes these effects, and
convection frequently occurs in the interior, case (ii). The tendency for compressibility
to push the convection towards the outer boundary was noted in Glatzmaier &
Gilman (1981a) and Drew et al. (1995). It is clearly a powerful effect, overcoming the
rapid diminution of gravity as r increases.

In figures 1(a) and 1(b) we show the variation of Racrit , mcrit and ωcrit as a
function of Nρ , which increases with increasing density variation. Here Pr = 1, n=2
and E =2 × 10−4. The variation with E may be approximately inferred from the
scaling laws, and we consider the effect of varying Pr below. We fix n= 2 throughout
the paper. This value was motivated by models of Jupiter’s atmosphere, where n

ranges from approximately 1 near the transition region to around 3 near the surface.
We see that the critical Rayleigh number, azimuthal wavenumber and frequency all
increase with Nρ . The increase in Ra and m appears to be due to the tendency
for the convection to move outward towards the low-density region when the shell
contains many density scale heights. In consequence, the effect of increasing Nρ is
similar to that of increasing η in Boussinesq convection, where as mentioned above
Racrit and mcrit increase with η. The increase in frequency cannot be attributed
to this effect because frequency does not vary consistently with η. The increase in
frequency is actually due to the local vortex-stretching mechanism in compressible
fluids, discussed by Evonuk & Glatzmaier (2004) and Evonuk (2008). In Boussinesq
convection, the convection columns form Rossby waves in which the restoring force
is due to the vortex stretching associated with the sloping boundary as a column
moves towards or away from the rotation axis. In compressible convection, as a fluid
element moves into less dense (denser) surroundings it expands (contracts), and its
vorticity is stretched (reduced) as it does so. In consequence, there is an additional
restoring force acting on the columns, which reinforces the restoring force due to the
sloping boundaries. This compressible effect therefore increases the wave frequency,
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and the greater the compressibility Nρ , the faster the wave travels. This effect can
also be understood in terms of the Proudman–Taylor theorem. When the vorticity
equation is formed, the Coriolis term on taking the curl of 2Ω × u no longer simply
becomes −2Ω ·∇u because this result relies on ∇· u = 0, which is no longer true in our
compressible situation. In consequence an additional term is present in the vorticity
equation, corresponding to the physical mechanism discussed above.

In figures 2(a)–2(c) we show how the eigenfunctions change as Nρ increases. The
parameters are E =2×10−5, η =0.5, Pr =1. The Boussinesq case (figure 2a) shows the
onset of convection occurring near the tangent cylinder as expected. The value of E

is sufficiently small for the asymptotic behaviour to be apparent, and the meridional
cross-section, taken at a φ value indicated by the horizontal line in figure 2(a), shows
the ‘tall thin column’ behaviour. At moderate compressibility, Nρ = 2 in figure 2(b),
the convection has moved out into the fluid interior, still maintaining the columnar
structure. Note that in figure 2(b) there is strong prograde spiralling; that is each
convective column is located at increasing φ as s increases (Zhang 1992).

At large compressibility, onset of the convection is close to the outer shell, and
despite the very strong curvature of the outer boundary here the columnar structure
is still evident. The physical reason why the outer boundary near the equator is the
preferred location in compressible convection appears to lie primarily in the form of
the reference state entropy gradient, which from (2.20) is

dS̄

dr
= − c1Pr−1

ζ −n
o − ζ −n

i

n

ζ n+1r2
; (6.1)

it becomes large and negative as ζ becomes small near the outer boundary. In
consequence, for a given velocity the corresponding entropy fluctation is much larger
near the outer boundary (see (4.9)), and this strongly enhances the buoyancy terms in
(4.7) and (4.8), enabling them to overcome the dissipation. Only near the equator is
it possible for convection columns to exist predominantly in the low-density region.
Far from the equator, columns must extend into the interior, with consequently larger
damping relative to only a thin region of strong driving. In Boussinesq convection the
large slope of the boundaries as the equatorial region is approached makes the flow
strongly ageostrophic; so Boussinesq convection avoids this region, but the strong
driving in this region in the compressible case overcomes this disadvantage. The
only other place ζ terms enter (4.7)–(4.9) is in the additional terms proportional to
dζ/dr in (4.7) and (4.8), consequences of the compressible continuity equation (2.10),
but these do not appear to be responsible for the strong preference of convection
to occur at the outer boundary. This explanation is supported by the results of
Glatzmaier & Gilman (1981a) and Drew et al. (1995) who also found convection
occurring primarily near the outer boundary in the vicinity of the equator in their
constant thermal diffusivity case. With constant thermal diffusivity the model based
on molecular thermal conductivity also has a much stronger temperature gradient
near the outer boundary. On the other hand, Glatzmaier & Gilman (1981b) found
that with constant conductivity, i.e. κ ∼ 1/ρ, where the reference state temperature
gradient is much more uniform, there was no such tendency for convection to move
towards the equatorial region.

The asymptotic regime we consider here is E → 0 with Nρ fixed. Figure 2(c)
suggests that another asymptotic regime may develop, in which E → 0 and Nρ → ∞
and where the modes are trapped at the equator. This double limit has not been
explored here in detail. Generally, the frequency of the modes is increasing with Nρ ,
and this raises the possibility that these modes may be connected with equatorially
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(a)

(b)

(c)

Figure 2. Left panel: equatorial section of entropy fluctuation S ′. The horizontal radius
marks the φ location at which the right-hand side meridional section is taken. Right panel:
meridional section at the longitude marked in the left panel (E = 2×10−5, η = 0.5, Pr = 1, n= 2):
(a) Boussinesq, Nρ = 0, Racrit = 3.2280 × 106, ωcrit = 534.36, mcrit = 23; (b) Nρ = 2.0, Racrit =

3.3258 × 107, ωcrit = 1844.42, mcrit = 55; (c) Nρ = 5.0, Racrit = 6.6570 × 107, ωcrit = 5614.99,
mcrit = 133.

trapped inertial modes (see equation (4.1) of Zhang, Liao & Busse 2007, where the
anelastic form of the inertial wave equation is given). An essential difference between
the columnar modes described here and inertial modes are that the frequency of



306 C. A. Jones, K. M. Kuzanyan and R. H. Mitchell

(a) (b)

0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

10

20

30

40

50

60

0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

10

20

30

40

50

60

Nρ Nρ

Azimuthal m values

Frequency × 10–2

Rayleigh number × 10–4

Azimuthal m values

Frequency × 10–1

Rayleigh number × 10–5

Figure 3. Critical Ra , ω and m as functions of Nρ (E = 2 × 10−4, η = 0.5, n= 2):
(a) Pr =0.1; (b) Pr = 10.

inertial modes is O(Ω), whereas the frequency of columnar modes is smaller, only
O(ΩE1/3). The increase in frequency as Nρ increases may represent a move to a more
inertial character of the convection in the double limit E → 0 and Nρ → ∞.

In figures 3(a) and 3(b) we show how varying the Prandtl number affects the critical
Rayleigh number, frequency and preferred wavenumber. The general trend is for all
these quantities to increase with Nρ , but the discontinuous frequency near Nρ = 1.3
indicates that mode crossing has occurred. The wave speeds are much higher at low
Prandtl number, and the preferred m values are lower.

In figures 4(a)–4(c) we show the eigenfunctions at a low Prandtl number of 0.1.
This can be compared with figure 2, which was for Prandtl number equal to 1. The
general trend of the convection moving outward as Nρ increases is found here also,
but note that the convecting region is much broader than at Pr = 1, and there is
very strong prograde spiralling. We found that this strong spiralling only occurs as
the Ekman number is reduced below ∼10−5. At E =2 × 10−4 there is only weak
spiralling. The amount of spiralling is important, as zonal flows are only generated
if the convection spirals outward. Stronger zonal flows will therefore be generated at
lower Prandtl number.

6.3. Results from the asymptotic theory

In table 1, results from (a) a wide-gap shell, η =0.5, with compressibility Nρ =2 and
(b) a narrow-gap shell, η = 0.8, at compressibility Nρ = 1 are shown. Both cases were
run at Pr = 0.1, 1 and 10. In all these cases, onset of instability is in the interior of the
fluid, which in case (a) is 1 < s < 2 and in case (b) is 4 <s < 5 in the dimensionless unit.
The frequency ω̂c at onset decreases strongly with Prandtl number. The azimuthal
wavenumber m̂c increases strongly with η. The turning point in the complex plane is at
sr + isi , and sM is where onset of the convection is first; k̂M is the radial wavenumber
at onset, and k̂MsM/m̂c measures the ratio of radial to azimuthal wavenumber. A
large value means the convection spirals strongly in the equatorial s−φ plane; k̂M is
generally negative, which means the spiralling is prograde, as in figures 2(b) and 4(b);
that is the spiral has increasing φ as s increases. At high Prandtl number, k̂MsM/m̂c

is small, and there is very little spiralling, the convection pattern taking the form of
radial spokes. At low Prandtl number k̂MsM/m̂c is large, and there is strong spiralling
as noted in figure 4(b). A curiosity is that the spiralling can actually be retrograde
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(a)

(b)

(c)

Figure 4. Left panel: equatorial section of entropy fluctuation S ′. Right panel: meridional
section at the longitude marked in the left panel (E = 2 × 10−5, η = 0.5, Pr = 0.1, n= 2):
(a) Boussinesq, Racrit = 1.0381 × 106, ωcrit = 1606.12, mcrit = 17; (b) Nρ = 2.0, Racrit =

4.6853 × 106, ωcrit = 6900.95, mcrit = 29; (c) Nρ = 5.0, Racrit = 7.6817 × 106, ωcrit = 18 933.3,
mcrit = 65.

at high Prandtl number, as in the case η = 0.8, Pr = 10. In Boussinesq spherical
convection, only prograde spiralling has been found (Zhang 1992; Jones et al. 2000).
The quantity Im(dk̂/ds)M measures how confined the convection is. The low value
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η 0.5 0.8

Pr 0.1 1.0 10.0 0.1 1.0 10.0
Nρ 2.0 2.0 2.0 1.0 1.0 1.0
Rc 3.2374 17.6348 24.4301 16.6877 73.4440 98.9767
ω̂c 4.5882 1.3780 0.1260 2.9716 0.9147 0.0853
m̂c 0.7945 1.5310 1.8190 2.5281 4.1368 4.7366
sr 1.0557 1.3328 1.3670 4.3778 4.2931 4.3310
si −0.2811 −0.1518 −0.0057 −0.7233 −0.2137 0.0466
sM 1.7438 1.4210 1.3683 4.7044 4.3537 4.3290

k̂M −0.4974 −0.3247 −0.0150 −0.4623 −0.2141 0.0587

Im(dk̂/ds)M 0.2368 1.3348 2.4801 0.4927 0.8675 1.2003
s− 0.9610 1.2345 1.3624 3.8290 4.1176 4.2794
s+ − 1.6260 1.3741 − 4.5723 4.3770

Table 1. Global bifurcation data.

η 0.5 0.8

Pr 0.1 1.0 10.0 0.1 1.0 10.0

NLG
ρ 1.7432 1.7706 1.8101 0.8917 0.9064 0.8344

Rc 1.2618 13.5384 20.7268 5.9826 63.2909 81.6280
ω̂c 5.2824 1.3205 0.1206 3.5073 0.8596 0.0745
m̂c 0.6123 1.1261 1.3150 1.9957 3.6949 4.0979

NAS
ρ 2.0745 1.8154 1.8092 1.0672 0.9458 0.8546

Rc 3.5165 14.9529 20.7292 17.9730 69.3181 83.9908
ω̂c 4.6658 1.3255 0.1208 3.1356 0.8786 0.0759
m̂c 0.8336 1.2155 1.3181 2.6740 3.9455 4.1839
sr 1.1024 1.0833 1.0103 4.5077 4.1948 4.0327
si −0.2982 −0.1438 −0.0150 −0.6171 −0.2426 0.0295
s+ − 1.4379 1.0328 − 4.5227 4.0593

Table 2. Local and global bifurcation data; NLG
ρ is the value of Nρ at which the s value which

gives minimum critical Rayleigh number on local theory coincides with the inner sphere.
For Nρ <NLG

ρ onset of convection is first at the tangent cylinder. For Nρ >NLG
ρ onset of

convection is in the interior of the gap, and global theory must be used; NAS
ρ is the value of Nρ

at which the lower anti-Stokes point, s−, lies on the tangent cylinder; s+ is the value of the
upper anti-Stokes point at Nρ = NAS

ρ , and Rc , ωc , mc , sr and si are evaluated using global
bifurcation theory at the same point.

at low Prandtl number means the disturbance spreads over a large fraction of the
cell, and this can be observed by comparing figure 2 with figure 4. The higher values
at high Prandtl number mean that at onset the convection is tightly constrained to
values of s close to sM , decaying rapidly in both s directions.

Also given in table 1 are the values of s− and s+, where the anti-Stokes lines cut
the real axis. The global theory is only strictly valid if this interval lies entirely inside
the fluid. This causes no difficulty at Pr = 1 and Pr = 10, but at Pr = 0.1 the interval
does not lie within the fluid. The values of s− are outside the interval, and there is
no value of s+, and the k̂ emerging from the dispersion relation becomes singular
as s → 1/(1 − η). This means that at low Prandtl number, because the convection
is so spread out at onset, the solution is not sufficiently localized to be completely
independent of the boundary conditions at the tangent cylinder and at s =1/1 − η.

In table 2, we again focus on η = 0.5 and η =0.8, but we consider the critical
values of Nρ that can occur. Since in Boussinesq fluid, the onset of convection is
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Figure 5. Asymptotic theory compared with full numerical code results (η = 0.5, Pr = 1,
n= 2). Solid line: R against Nρ from the asymptotic theory. Dashed line: Ra × E4/3 against

Nρ at E = 10−5. Dotted line: Ra × E4/3 against Nρ at E = 10−4. The small dots showing the

break in the solid line denote the asymptotic values at NLG
ρ and NAS

ρ . For Nρ <NL
ρ G local

theory at s = si is used; for Nρ > NAS
ρ the global theory is used.

always first at the tangent cylinder, whereas at large Nρ onset is in the interior of
the fluid, there must always be a critical value of Nρ , denoted by NLG

ρ , below which
onset of convection is first at the tangent cylinder, and these are listed in table 2.
For Nρ <NLG

ρ , local theory with s = si must be used; for Nρ >NLG
ρ , global theory,

with a complex sc, is used; so Nρ = NLG
ρ denotes the transition between local and

global theories. As noted above, even quite modest amounts of compressibility push
the convection away from the tangent cylinder, despite the gravity falling off steeply
as the distance from the tangent cylinder increases. The corresponding values of Rc,
ω̂c and m̂c are given at this critical Nρ = NLG

ρ ; NAS
ρ is the value of Nρ at which the

smaller of the two anti-Stokes points, s−, lies on the tangent cylinder; s+ is the value
of the larger anti-Stokes point at Nρ = NAS

ρ , and Rc, ωc, mc, sr and si are evaluated

using global bifurcation theory at the same point. For Nρ >NAS
ρ and s+ < 1/(1 − η)

the entire interval (s−, s+) lies in the fluid, and so global bifurcation theory gives the
correct asymptotic E → 0 limit. For values of Nρ in NLG

ρ <Nρ <NAS
ρ neither the

global nor the local asymptotic theory applies.
Most of the features seen in figures 1–4 can be inferred from the asymptotic theory,

though values of E < 10−4 are needed before the asymptotic regime is unambiguously
reached. Thus the higher values of m, the lower frequencies and the higher Rayleigh
numbers at higher Prandtl number can all be deduced from the asymptotic theory.

In figure 5, the approach to the asymptotic limit is examined, for Pr = 1 and
η =0.5. We show Ra × E4/3 as a function of Nρ at E = 10−4 and E = 10−5 and also
show the asymptotic value of R. In the limit E → 0 the full numerical simulations
should approach the asymptotic curve, and it appears that they do. Note that below
NLG

ρ = 1.771 the local asymptotic theory is used, and above NAS
ρ = 1.815 the global

asymptotic theory is used. Between the two is a gap, as the the global asymptotic
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Figure 6. Plot of log10 Racrit , log10 ωcrit and log10 mcrit as functions of − log10 E (Nρ = 5,
η = 0.5, Pr = 1.0, n= 2). Dashed lines with the slopes corresponding to the expected asymptotic
power laws are drawn for comparison.

theory is not strictly valid until s− lies inside the fluid. The asymptotic limit is
approached most rapidly when the convection lies well inside the fluid interior. This
is not too surprising, as when the convection lies at the tangent cylinder, the errors
are O(E2/9) (Dormy et al. 2004), whereas in the interior they are O(E1/3). When the
convection occurs near the outer shell, it is restricted in the z direction by the geometry
(see figure 2c); so for the tall thin columns necessary for the asymptotic theory to be
a good approximation, naturally the radial extent must be correspondingly less, and
this requires even smaller E.

In figure 6 we show the variation of Ra , ω and m as E varies for a strongly
stratified case, Nρ = 5. Figure 6 is plotted on a logarithmic scale so that the power
law variation with E can be discerned. We see that for the lowest values of E that
could be comfortably achieved by the code at large Nρ , about E = 10−5, the slope of
log10 Ra against log10 E−1 is 1.3, not far from the expected asymptotic value of 4/3.
Similarly the slope of log10 ω against log10 E−1 is 0.69, close to the expected value of
2/3, while the exponent of the azimuthal wavenumber dependence is E−0.35 compared
to the asymptotic value of −1/3.

6.4. Solutions antisymmetric about the equator

Busse (1970) noted that onset of solutions with ψ , ur and uφ symmetric about
the equator is at lower critical Rayleigh number than the modes with the opposite
parity in the Boussinesq case. Note that modes with this symmetry also have uz

antisymmetric about the equator. We explored whether modes with symmetric ur

are also preferred in compressible cases. In much the same way as for the case of
symmetric modes about the equator, the critical Ra and azimuthal numbers m grow
with Nρ (see figure 7). If we compare figures 7(a) and 7(b), we see that the critical
Rayleigh number is larger for the antisymmetric modes at all values of Nρ; so there
is no evidence that antisymmetric modes are preferred in compressible convection.



Compressible convection with fast rotation 311

(a) (b)

0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

10

20

30

40

50

60

70

80

90

10

20

30

40

50

60

70

80

90

Nρ

0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

Nρ

Azimuthal m values

Frequency × 10–1

Rayleigh number × 10–5

Azimuthal m values

Frequency × 10–1

Rayleigh number × 10–5

Figure 7. Critical Ra, ω and m as functions of Nρ for (a) symmetric modes and

(b) antisymmetric modes (E =2 × 10−4, η = 0.35, n= 2).

(a) (b) (c) (d)

Figure 8. Meridional sections for E = 2 × 10−4, η = 0.5, Pr = 1, n= 2: (a) symmetric
Boussinesq mode, Nρ = 0, Racrit = 8.7529 × 104, ωcrit = 90.11, mcrit = 6; (b) antisymmetric

mode with Ra = 4.0712 × 105, ω =279.59, m= 10; (c) symmetric mode with Nρ =

5.0, Racrit = 2.02198 × 105, ωcrit = 881.28, mcrit = 39; (d) antisymmetric mode with Ra =
3.11521 × 106, ω = 820.29, m= 42.

The structure of the solutions is shown in figure 8, for both Boussinesq and strongly
compressible cases. Apart from the equatorial parity, the behaviour is similar to that
of the symmetric modes.

6.5. Higher (polar) modes inside the tangent cylinder

Convection always starts outside the tangent cylinder, but as the Rayleigh number
is increased, onset of higher-Rayleigh-number modes takes place, and eventually
convection occurs inside the tangent cylinder as well as outside it. Indeed, eventually
more heat transport occurs inside the tangent cylinder than outside it (Tilgner &
Busse 1997). Here we explore how convection extends into the tangent cylinder from
a linear perspective. At a given m there is a two-parameter family of eigenfunctions,
one corresponding to modes with additional zeros in the z-direction and another
corresponding to higher modes in the s direction. The next mode after the fundamental
in the z direction is just the antisymmetric mode discussed in the § 6.4, and the
subsequent sequence has increasing structure in the columns. There are substantial
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(a)

(b)

(c)

Figure 9. Some higher-Ra modes for Boussinesq convection (E =2 × 10−4, η = 0.7, Pr = 1.0,
n= 2): (a) Racrit = 1.0536×106, ωcrit = 111.09, mcrit = 26 (lowest mode); (b) Ra2 = 2.0979×106,
ω2 = 97.83, m2 = 29; (c) Ra5 = 8.6838 × 106, ω5 = 58.69, m5 = 39. Left panel: equatorial section
of radial velocity ur . Right panel: meridional section at the longitude marked in the left panel.

jumps in Racrit between each mode in this sequence. In figure 9 we show some
of the s sequence of modes for the Boussinesq case with E = 2 × 10−4, η = 0.7,
Pr = 1, n= 2. The next symmetric mode in the z sequence has Ra =8.378 × 106 and
vorticity which changes sign twice along one column. Figure 9(a) is the fundamental
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(a) (b) (c) (d)

Figure 10. Meridional sections of the incompressible (Boussinesq) solutions for high
latitudinal modes for E = 2 × 10−4, η = 0.7, Pr = 1, n= 2: (a) Ra6 = 1.0613 × 107, ω6 = 58.09,
m6 = 40; (b) Ra9 = 1.2618 × 107, ω9 = 37.97, m9 = 33; (c) Ra11 = 1.3512 × 107, ω11 = 37.89,
m11 = 26; (d) Ra = 1.4797 × 107, ω = − 3.052, m= 3 (not optimized over m).

(lowest Racrit ) mode, with a structure similar to those shown in figures 2(a) and
4(a). The next mode is shown in figure 9(b). In the meridional section we see a
double row of vortices as s varies, but this is slightly deceptive, because the radial
equatorial section in the left panel shows that there is in fact only one spiral, but
constant φ lines cut both positive and negative spirals with substantial amplitudes.
This can happen at low Prandtl number even for the lowest mode (see figures 4a
and 4b). At very low Ekman number, the interval in Rayleigh number between
adjacent modes becomes O(RaE1/3) (Jones et al. 2000). We omit the third and fourth
modes in the sequence, which exist at Ra =3.577 × 106 and Ra = 5.514 × 106, and in
figure 9(c) we show the fifth member of this eigenfunction sequence. Not only has the
whole region outside the tangent cylinder been filled with convecting columns, but
they have even penetrated inside the tangent cylinder, working in from the tangent
cylinder itself. Nonlinear convection at this value of Ra will have significant amplitude
inside the tangent cylinder. In figure 10, the s sequence continues, but we show just
meridional sections. Figure 10(a) is the sixth in the s sequence and illustrates the
rapid penetration of the convection into the tangent cylinder. Local convection is
now possible inside the tangent cylinder, and so the problem starts to resemble the
degenerate problem of convection between horizontal boundaries. In consequence
there are now smaller gaps in Ra between the adjacent modes in the sequence, and
it becomes harder to evaluate the mode sequence. The trend is that modes of smaller
m start to appear, and the convection penetrates right up to the polar regions. The
final picture (figure 10d) has a very low value of m. Unlike the other modes in
this sequence it has not been optimized over m, but we include it to illustrate the
existence of neutral polar modes at Rayleigh numbers of the same order as the other
modes.

In figure 11 we show the equivalent s sequence for a strongly compressible case.
As expected, all members of the sequence have convection starting close to the outer
wall. The general trend of movement towards the polar regions occurs for these highly
compressible modes also. However, the crossing of the tangent cylinder is much less
of a barrier for the compressible modes, and the spacing in Rayleigh number is fairly
regular. The sharp drop in the Rayleigh number intervals between adjacent modes
that is such a clear feature in figures 9 and 10 does not occur.
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(a) (b) (c) (d) (e)

Figure 11. Meridional sections of the compressible (Nρ = 5.0) solutions for high latitudinal

modes for E = 2×10−4, η = 0.7, Pr = 1, n= 2: (a) the first unstable mode, Racrit = 1.2087×107,
ωcrit = 1249.7, mcrit = 98; (b) the second mode, Ra2 = 1.6655×107, ω2 = 1152.5, m2 = 105; (c) the
fifth mode, Ra5 = 2.4845 × 107, ω5 = 982.0, m5 = 104; (d) the eighth mode, Ra8 = 3.0735 × 107,
ω8 = 858.9, m8 = 99; (e) and a higher mode, Rahigh = 4.1685 × 107, ωhigh = 592.3, mhigh =74;

7. Conclusion
Although our model has some differences between the earlier models of Glatzmaier

& Gilman (1981a, b) and Drew et al. (1995), with the diffusion of entropy notably
dominating in the heat equation in this work, many of the features found there also
occur here. Compressibility moves the region of onset of convection away from the
tangent cylinder towards the outer shell. This is a very powerful effect. Even a moderate
degree of compressibility, with only a few scale heights in the layer, can overcome
counteracting tendencies such as a gravity field and a basic state temperature gradient
that drop off quickly as r increases. We also note that compressibility increases the
critical azimuthal wavenumber at onset at a given Ekman number. This means
that nonlinear compressible convection is considerably more challenging numerically
than Boussinesq convection. To achieve the same Ekman number at Nρ = 5 as in a
Boussinesq code, the azimuthal resolution will need to be roughly a factor of five
greater. Another notable feature is that the wave frequencies are substantially higher
in strongly compressible cases. Wave frequency decreases rapidly with increasing
Prandtl number, but compressibility increases frequencies at all Prandtl numbers.
The strong spiralling effect seen particularly at low Prandtl numbers occurs also in
compressible convection, and so strong zonal flows are more likely to result from low-
Prandtl-number compressible convection, just as they are in Boussinesq convection.

We have also shed some light on the slightly mysterious result of convection at
negative Rayleigh number reported in Drew et al. (1995). We have established this
phenomenon cannot occur if entropy diffusion dominates over thermal diffusion in
the heat equation. Since this is likely to be the case in even very weakly turbulent
systems, it seem unlikely that the negative Rayleigh convection is of any great physical
significance.

The asymptotic theory of convection developed in Jones et al. (2000) and Dormy
et al. (2004) has been successfully extended to the compressible case in a natural
way. Despite the fact that the Proudman–Taylor theorem does not strictly apply in
a compressible fluid, the convection still forms tall thin columns in the limit E → 0
if the other parameters remain fixed. This allows rapid exploration of the parameter
space, and all the major effects reported here are found in the asymptotic theory, as
well as by full numerical computation. At Pr about unity or greater there is excellent
agreement between the asymptotic theory and the full numerics. However, there is
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a difficulty at low Prandtl number with the asymptotic theory when onset of the
convection is first in the interior of the fluid rather than at the tangent cylinder. In
order to apply the asymptotic boundary condition that the disturbance vanishes as
we both increase and decrease s from its critical location, it is necessary for the s

interval between the points at which the anti-Stokes lines defined by (4.12) cut the
real s axis to lie entirely within the fluid. At low Pr this is often not the case, and
then the boundary conditions at s = si, so matter even in the limit E → 0. The correct
procedure for obtaining the E → 0 limit in this awkward case has not yet been fully
worked out. Nevertheless, although precise values of Ra cannot be found at small E,
the general trends predicted by the asymptotic theory are still found at Pr =0.1.

We have considered the antisymmetric modes as well as the symmetric modes,
but we find that the symmetric modes are preferred in compressible convection, just
as they are in Boussinesq convection (Busse 1970). We also examined the higher-
order modes, to see how nonlinear convection is likely to spread into the tangent
cylinder. We find that at Rayleigh numbers a factor 10 higher than initial onset,
modes both inside and outside the tangent cylinder are excited, in both Boussinesq
and compressible convection.

Appendix A. Boussinesq limit Nρ → 0

We first consider the nonlinear equations (2.7) and (2.16) in the Boussinesq limit,
Nρ → 0. From (2.3), ζ0 → 1, c0 → 1 and c1 → 0. From (2.2c), this implies

gdρ

p
→ 0 and hence

gd

cpT
→ 0, (A 1a, b)

using the perfect gas law. In (2.7), the term ∇(pc/ρ) has order of magnitude pc/ρd ,
while in the term

gSc

cp

=
g
γ

(
pc

p
− γρc

ρ

)
(A 2)

the pressure perturbation part has order of magnitude gpc/p which by (A 1a) is
negligibly small in comparison in the Boussinesq limit. The pressure fluctuation part
in (A 2) is therefore negligible in comparison to the density fluctuation part. Then
from the gas law, ρc/ρ → −Tc/T ; so

Sc

cp

=
S

cp

→ Tc

T
= αTc, (A 3)

where α = 1/T is the coefficient of expansion. This can be extended to the case of
a liquid, provided α is the appropriate coefficient of expansion (Anufriev, Jones &
Soward 2005). The nonlinear momentum equation therefore reduces to

∂u
∂t

= u × ω − 2Ω × u − ∇pc

ρ
− ∇(u2/2) + ν Fv − gαTc (A 4)

in the Boussinesq limit.
Since in the reference state ρ, p and T all tend to constant values in the Boussinesq

limit, (A 3) implies that the turbulent and molecular diffusion terms in the heat
transport equation (2.16) have the same form as Nρ → 0. Furthermore, the viscous
heating term involving Q is negligible in this limit, since from the momentum equation
Sc/cp has the order of magnitude νu/gd2, which implies that the viscous heating term
in (2.16) is smaller than the advection term ρT (u · ∇)Sc by a factor gd/cpT which by
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(A 1b) is very small in the Boussinesq limit. Since Tc and T differ only by a constant
in the Boussinesq limit, the heat transport equation (2.16) becomes

∂T

∂t
+ (u · ∇)T = ∇ · κ∇T , (A 5)

where κ is the sum of the turbulent and molecular diffusivities. The constant entropy
boundary conditions reduce to constant temperature boundary conditions from (A 3).

For numerical solution, it is convenient to rewrite the linearized dimensionless
entropy equation (2.22) in the form{

∇2 − Pr
∂

∂t

}
S ′ =

ξ

ρ
r̂ · u

(
1

ρ−1
o − ρ−1

i

)
− ξ

n + 1

n

∂S ′

∂r
. (A 6)

Here n is the polytropic index; ρ = ρ(r) is the density; ρo = ρ(ro); ρi = ρ(ri).
Compressibility is involved in our equations mainly through the logarithmic derivative

ξ =
1

ρ

dρ

dr
= −c1

n

ζ

1

r2
, (A 7)

using (2.2a, b). Now we show that the dimensionless linearized equations (2.22) and
(2.24) reduce to the Boussinesq equations with the temperature fluctuation T ′ replacing
the entropy fluctuation S ′ in the limit Nρ → 0. The following asymptotic formulae in
this limit can be derived from (2.2) and (2.3):

ζ0 = 1 − η

1 + η

Nρ

n
+ O

(
Nρ

2
)
, c0 = 1 − 2η

1 − η2

Nρ

n
+ O

(
Nρ

2
)
, (A 8a, b)

c1 =
η

(1 − η)2
Nρ

n
+ O

(
Nρ

2
)
, ζ (r) = 1 +

ηNρ

n(1 − η)2

[
1

r
− 2(1 − η)

1 + η

]
+ O

(
N2

ρ

)
,

(A 9a, b)

ξ (r) = −nc1

r2ζ
= −Nρ

r2

η

(1 − η)2
+ O

(
N2

ρ

)
. (A 10)

From (A 10) it is clear that the second term on the right-hand side of (A 6) becomes
zero in the Boussinesq limit Nρ → 0. Using (A 8) and (A 9),

ζ −n
o = 1 +

ηNρ

1 + η
+ O

(
N2

ρ

)
, ζ −n

i = 1 − Nρ

1 + η
+ O

(
N2

ρ

)
; (A 11a, b)

so the entropy equation (A 6) reduces to

Pr
∂T ′

∂t
=

η( r̂ · u)

r2(1 − η)2
+ ∇2T ′ (A 12)

in the Boussinesq limit. Comparing with Dormy et al. (2004, equations (2.3a, b, d)),
we see that the differences between their model and ours are that the gravity term in
our equation of motion is taken as ∼1/r2 instead of ∼r , appropriate for a uniform
sphere, and only the differential heating case is considered here. Also, the unit of
entropy (temperature in the Boussinesq limit) has a factor of η/(1 − η)2 different in
its definition; so this factor must be included in the Rayleigh number definition.

In principle the first term on the right-hand side of (A 12) can be written as

η

(1 − η)2
r̂ · u

(
1 − λ

r2
+ λ r

)
,
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where the parameter 0 � λ � 1 is the fraction of internal heating (cf. Dormy et al.
2004). However, we assume for our problem only differential heating, and so in this
paper λ= 0.

Appendix B. The form of the numerical equations
The toroidal–poloidal decomposition (5.1) employed here implies that

u =

[
L2{f }

r2

]
r̂ +

1

r

[
1

sin θ

∂e

∂φ
+

∂2f

∂r∂θ
+

∂f

∂θ
ξ

]
θ̂

+
1

r

[
1

sin θ

∂2f

∂r∂φ
− ∂e

∂θ
+

1

sin θ

∂f

∂φ
ξ

]
φ̂, (B 1)

where the ‘horizontal’ operator

L2 ≡ − 1

sin θ

∂

∂θ

{
sin θ

∂

∂θ

}
− 1

sin2 θ

∂2

∂φ2
. (B 2)

Then we apply curl and double-curl operators to (2.24) and evaluate their radial parts
by multiplying by r̂ . For evaluation of the Coriolis terms, as Ω = Ω ẑ, it is useful to
introduce the operator

Q ≡ − cos θL2 ∂

∂r
− sin θ

∂

∂θ

∂

∂r
+

L2

r

{
sin θ

∂

∂θ

}
. (B 3)

Then we can write

r̂ · ∇ × ( ẑ × u) =
1

r2
Q{f } − 1

r2

∂e

∂φ
+ ξ

[
−cos θ

r2
L2 − sin θ

r2

∂

∂θ

]
{f } (B 4)

and

r̂ ·
[
(∇×)2( ẑ × u)

]
=

1

r2
Q{e} +

1

r2
D2 ∂f

∂φ
− ξ

L2

r3

∂f

∂φ
+

1

r2

∂

∂r

(
ξ

∂f

∂φ

)
, (B 5)

where

D2 ≡ ∂2

∂r2
− L2

r2
. (B 6)

Then r2 r̂ · curl of the momentum equation (2.24) is

L2 ∂e

∂t
− L2D2{e} + 2E−1

[
Q{f } − ∂e

∂φ
+ ξ

(
−cos θ L2 − sin θ

∂

∂θ

)
{f }

]
= ξ r2 ∂

∂r

(
L2

r2
{e}

)
, (B 7)

and applying r2 r̂ · curl2 gives

− L2D2 ∂f

∂t
− L2 ∂

∂r

(
∂f

∂t
ξ

)
+ L2D4{f } + L2

{
ξ
∂3f

∂r3
+ 3ξ ′ ∂

2f

∂r2
+ 3ξ ′′ ∂f

∂r
+ ξ ′′′f

}
− 1

r2
L4

{
ξ
∂f

∂r
+ ξ ′f

}
+ 2E−1

[
Q{e} + D2 ∂f

∂φ
− ξ

r
L2 ∂f

∂φ
+

∂

∂r

(
ξ

∂f

∂φ

)]
= RaL2

{
S ′

r2

}
+ Fv, (B 8)
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where the viscous term

Fv =
ξ

r2

∂

∂r

{
L4f

}
+

(
2

3

ξ 2

r2
− 2ξ

r3
− ξ ′

r2

)
L4f − ξ

∂3

∂r3

{
L2f

}
+

(
2ξ

r
− ξ 2 − ξ ′

)
∂2

∂r2

{
L2f

}
+

(
2ξ 2

r
− 2ξ

r2
+

2ξ ′

r
− 3ξ ξ ′

)
∂

∂r

{
L2f

}
+

(
4

r
ξ ξ ′ − 2ξ 2

r2
− ξ ′2 − ξ ξ ′′

)
L2f, (B 9)

with

ξ ′ =
∂ξ

∂r
, ξ ′′ =

∂2ξ

∂r2
, ξ ′′′ =

∂3ξ

∂r3
.

Finally, using expansion (5.1) for u , the entropy equation (A 6) reads

∇2S ′ − Pr
∂S ′

∂t
=

ξ

ρ

(
1

ρ−1
o − ρ−1

i

)
L2

r2
{f } − ξ

n + 1

n

∂S ′

∂r
. (B 10)

We use the governing equations in the above forms for the full numerical compu-
tations. In our code, we solve the linear problem by a spectral collocation method,
using a representation of our solution by Chebyshev polynomials in the radial
coordinate and associated Legendre polynomials in the θ and φ directions. Crucially,
the Coriolis term only couples adjacent spherical harmonics; so the matrices have a
banded structure. We evaluate eigenvalues by inverse iteration. Typically the radial
resolution was 30–50 polynomials in both directions, the higher Nρ using the highest
resolution. Our code can solve the eigenvalue problem either for symmetric or
antisymmetric modes.
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